Ruang waktu

Bagian dari seri artikel mengenai
Relativitas umum
Spacetime curvature schematic
G μ ν + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }}
    • Pengantar
    • Sejarah
  • Rumus matematis
    • Sumber
    • Uji coba
Prinsip dasar
  • Teori relativitas
  • Kerangka acuan
  • Kerangka acuan inersia
  • Prinsip ekuivalensi
  • Ekuivalensi massa–energi
  • Relativitas khusus
  • Garis dunia
  • Geometri Riemann
Fenomena
  • Masalah Kepler
  • Gravitasi
  • Medan gravitasi
  • Lensa gravitasi
  • Gelombang gravitasi
  • Pergeseran merah gravitasi
  • Pergeseran merah
  • Pergeseran biru
  • Dilatasi waktu
  • Dilatasi waktu gravitasi
  • Kompresi gravitasi
  • Frame-dragging
  • Efek geodesi
  • Horizon peristiwa
  • Singularitas gravitasi
  • Lubang hitam
  • Lubang putih
Ruang waktu
  • Persamaan
  • Formalisme
Persamaan
Formalisme
  • ADM
  • BSSN
  • Pasca-Newton
Teori lanjutan
Solusi
  • Schwarzschild
  • Reissner–Nordström
  • Gödel
  • Kerr
  • Kerr–Newman
  • Kasner
  • Lemaître–Tolman
  • Taub-NUT
  • Milne
  • Robertson–Walker
  • Gelombang pp
  • Debu van Stockum
  • Weyl−Lewis−Papapetrou
Ilmuwan
  • l
  • b
  • s
Penggambaran pelengkungan ruang di sekitar ditambah dengan waktu. Dengan mengombinasikan ruang dan waktu menjadi satu manifol, para ahli fisika telah secara signifikan menyederhanakan sejumlah besar teori dalam fisika dan memahami secara lebih seragam mengenai cara kerja alam semesta dalam lingkup ilmu kosmologi dan mekanika kuantum.

Dalam fisika, ruang waktu adalah permodelan matematika yang mengombinasikan ruang dan waktu menjadi satu kontinuitas. Ruang-waktu biasanya digambarkan dengan ruang secara tiga dimensi dan waktu memainkan peran sebagai dimensi keempat yang merupakan bagian yang berbeda dari dimensi spasial. Berdasarkan perspektif ruang Euklides, alam semesta memiliki tiga dimensi ruang ditambah dengan waktu. Dengan mengombinasikan ruang dan waktu menjadi satu manifol, para ahli fisika telah secara signifikan menyederhanakan sejumlah besar teori dalam fisika dan memahami secara lebih seragam mengenai cara kerja alam semesta dalam lingkup ilmu kosmologi dan mekanika kuantum.

Dalam mekanika klasik non-relativistik, penggunaan ruang Euclidean akan lebih tepat dibandingkan penggunaan ruang-waktu, karena waktu diperlakukan sebagai satu faktor yang unversal dan konstan, independen terhadap pergerakan dan pengamat. Dalam konteks teori relativitas, waktu tidak bisa dipisahkan dari ruang tiga dimensi karena kelajuan suatu objek dan pengamat yang relatif dan dapat dipengaruhi oleh medan gravitasi yang mampu memperlambat waktu.

Dalam kosmologi, konsep ruang-waktu mengombinasikan ruang dan waktu menjadi satu alam semesta yang abstrak. Secara matematis, ruang waktu merupakan manifol yang terdiri dari kejadian yang bisa dijelaskan dengan sistem koordinat. Tiga dimensi (panjang, lebar, dan tinggi) dan satu dimensi temporal (yaitu waktu) dibutuhkan. Dimensi merupakan komponen yang independen dari jaring-jaring koordinat untuk menentukan titik pada suatu ruang yang terdefinisi. Seperti contoh dalam sebuah globe terdapat garis lintang dan garis bujur yang merupakan dua koordinat yang independen yang bersama-sama dapat membentuk satu titik yang unik. Dalam ruang dan waktu, jaring-jaring koordinat yang melebar hingga 3+1 dimensi menentukan kejadian (bukan hanya titik di suatu ruang), dan waktu ditambahkan di dimensi lainnya pada jaring-jaring koordinat. Dengan ini koordinat dapat menspesifikasikan "di mana" dan "kapan" kejadian terjadi. Tidak seperti koordinat spasial yang biasa, terdapat batasan bagaimana pengukuran dapat dilakukan secara spasial dan temporal. Batasan ini berkorespondensi secara kasar terhadap permodelan matematika tertentu, misal manifol Lorentzian, yang membedakannya dari ruang Euklides secara perwujudan simetrinya.

Hingga awal abad ke 20, waktu dipercaya bersifat independen terhadap pergerakan, dan meningkat pada laju yang tetap di semua kerangka acuan. Namun eksperimen menunjukan bahwa waktu melambat pada kecepatan yang lebih tinggi dari suatu kerangka acuan terhadap kerangka acuan yang lain. Perlambatan ini, yang disebut dengan dilatasi waktu, dijelaskan di dalam teori relativitas khusus. Berbagai eksperimen telah menunjukan kejadian dilatasi waktu seperti pada peluruhan partikel muon dari radiasi kosmik dan perlambatan jam atom di atas pesawat ulang alik relatif terhadap jam inersia yang tersinkronisasi yang berada di bumi. Sehingga durasi waktu dapat bervariasi bergantung pada kejadian dan kerangka acuan.

Ketika dimensi dipahami sebagai sebuah komponen dari sistem jaring dan bukan merupakan sifat fisik dari waktu, akan lebih mudah dipahami bagaimana memandang dimensi lain sebagai hasil dari transformasi koordinat.

Beberapa mengusulkan teori ruang-waktu memasukkan dimensi tambahan, termasuk dimensi ruang temporal yang beberapa dimensi yang tidak temporal maupun spasial (hyperspace). Berapa jumlah dimensi yang dibutuhkan untuk menjelaskan alam semesta merupakan sebuah pertanyaan yang masih didiskusikan. Teori yang muncul adalah teori dawai yang memprediksikan antara 10 hingga 26 dimensi, teori M yang memprediksikan 11 dimensi (10 spasial dan 1 temporal). Namun keberadaan lebih dari empat dimensi akan terasa perbedaannya pada tingkat subatomik.[1]

Perintisan konsep

Perintisan konsep mengenai ruang waktu dilakukan oleh Isaac Newton dengan menambahkan konsep materi. Newton memberikan rumusan matematis bagi ruang waktu yang mana tidak berkaitan dengan keberadaan materi di dalamnya. Isaac Newton memberikan asumsi bahwa ruang dan waktu bersifat absolut karena tidak dapat dipengaruhi oleh keberadaan sesuatu di luarnya. Ruang waktu diyakininya dalam keadaan yang sama dan tidak bergerak. Konsep ruang waktu yang dikemukakan oleh Newton menjadi dasar bagi teori jagad raya yang dikemukakannya. Asumsinya ini diterima karena berbagai prediksi yang dibuatnya terbukti melalui percobaan.[2]

Referensi

  1. ^ Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George (2011). Relativistic Celestial Mechanics of the Solar System. John Wiley & Sons. hlm. 157. ISBN 3527634576. , Extract of page 157
  2. ^ Purwanto, Agus (Agustus 2012). Nalar Ayat-Ayat Semesta: Menjadikan AI-Quran sebagai Basis Konstruksi llmu Pengetahuan. Bandung: Penerbit Mizan. hlm. 41. ISBN 978-979-433-730-1.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)

Pranala luar

Wikibooks memiliki buku di:
Special Relativity
  • http://universaltheory.org

Pustaka

  • Ehrenfest, Paul (1920) "How do the fundamental laws of physics make manifest that Space has 3 dimensions?" Annalen der Physik 366: 440.
  • George F. Ellis and Ruth M. Williams (1992) Flat and curved space–times. Oxford Univ. Press. ISBN 0-19-851164-7
  • Isenberg, J. A. (1981). "Wheeler–Einstein–Mach spacetimes". Phys. Rev. D. 24 (2): 251–256. Bibcode:1981PhRvD..24..251I. doi:10.1103/PhysRevD.24.251. 
  • Kant, Immanuel (1929) "Thoughts on the true estimation of living forces" in J. Handyside, trans., Kant's Inaugural Dissertation and Early Writings on Space. Univ. of Chicago Press.
  • Lorentz, H. A., Einstein, Albert, Minkowski, Hermann, and Weyl, Hermann (1952) The Principle of Relativity: A Collection of Original Memoirs. Dover.
  • Lucas, John Randolph (1973) A Treatise on Time and Space. London: Methuen.
  • Penrose, Roger (2004). The Road to Reality. Oxford: Oxford University Press. ISBN 0-679-45443-8.  Chpts. 17–18.
  • Poe, Edgar A. (1848). Eureka; An Essay on the Material and Spiritual Universe. Hesperus Press Limited. ISBN 1-84391-009-8. 
  • Robb, A. A. (1936). Geometry of Time and Space. University Press. 
  • Erwin Schrödinger (1950) Space–time structure. Cambridge Univ. Press.
  • Schutz, J. W. (1997). Independent axioms for Minkowski Space–time. Addison-Wesley Longman. ISBN 0-582-31760-6. 
  • Tangherlini, F. R. (1963). "Schwarzschild Field in n Dimensions and the Dimensionality of Space Problem". Nuovo Cimento. 14 (27): 636. 
  • Taylor, E. F. (1963). Spacetime Physics. W. H. Freeman. ISBN 0-7167-2327-1.  Parameter |coauthors= yang tidak diketahui mengabaikan (|author= yang disarankan) (bantuan)
  • Wells, H.G. (2004). The Time Machine. New York: Pocket Books. ISBN 0-671-57554-6.  (pp. 5–6)
  • Stanford Encyclopedia of Philosophy: "Space and Time: Inertial Frames" by Robert DiSalle.