三角関数の原始関数の一覧

本項は三角関数を含む式の原始関数の一覧である。式に指数関数を含むものは指数関数の原始関数の一覧を、さらに完全な原始関数の一覧は、原始関数の一覧を参照のこと。三角積分も参照のこととする。

以下の全ての記述において、a は0でない、実数とする。また、C積分定数とする。

三角関数の原始関数

sin a x d x = 1 a cos ( a x ) + C {\displaystyle \int \sin ax\;\mathrm {d} x=-{\frac {1}{a}}\cos \left(ax\right)+C}
cos a x d x = 1 a sin a x + C {\displaystyle \int \cos ax\;\mathrm {d} x={\frac {1}{a}}\sin ax+C}
tan a x d x = 1 a ln | cos ( a x ) | + C = 1 a ln | sec ( a x ) | + C {\displaystyle \int \tan ax\;\mathrm {d} x=-{\frac {1}{a}}\ln \left|\cos \left(ax\right)\right|+C={\frac {1}{a}}\ln \left|\sec \left(ax\right)\right|+C\,\!}
cot a x d x = 1 a ln | sin a x | + C {\displaystyle \int \cot ax\;\mathrm {d} x={\frac {1}{a}}\ln \left|\sin ax\right|+C\,\!}
sec a x d x = 1 a ln | sec a x + tan a x | + C = 1 a gd 1 ( a x ) + C gd 1 x {\displaystyle \int \sec {ax}\,\mathrm {d} x={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C={\frac {1}{a}}\operatorname {gd} ^{-1}(ax)+C\quad \operatorname {gd} ^{-1}x} グーデルマン関数逆関数
csc a x d x = 1 a ln | csc a x + cot a x | + C {\displaystyle \int \csc {ax}\,\mathrm {d} x=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}

正弦関数のみを含む式の原始関数

sin a x d x = 1 a cos a x + C {\displaystyle \int \sin ax\;\mathrm {d} x=-{\frac {1}{a}}\cos ax+C\,\!}
sin 2 a x d x = x 2 1 4 a sin 2 a x + C = x 2 1 2 a sin a x cos a x + C {\displaystyle \int \sin ^{2}{ax}\;\mathrm {d} x={\frac {x}{2}}-{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}-{\frac {1}{2a}}\sin ax\cos ax+C\!}
sin 3 a x d x = cos 3 a x 12 a 3 cos a x 4 a + C {\displaystyle \int \sin ^{3}{ax}\;\mathrm {d} x={\frac {\cos 3ax}{12a}}-{\frac {3\cos ax}{4a}}+C\!}
x sin 2 a x d x = x 2 4 x 4 a sin 2 a x 1 8 a 2 cos 2 a x + C {\displaystyle \int x\sin ^{2}{ax}\;\mathrm {d} x={\frac {x^{2}}{4}}-{\frac {x}{4a}}\sin 2ax-{\frac {1}{8a^{2}}}\cos 2ax+C\!}
x 2 sin 2 a x d x = x 3 6 ( x 2 4 a 1 8 a 3 ) sin 2 a x x 4 a 2 cos 2 a x + C {\displaystyle \int x^{2}\sin ^{2}{ax}\;\mathrm {d} x={\frac {x^{3}}{6}}-\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax-{\frac {x}{4a^{2}}}\cos 2ax+C\!}
sin b 1 x sin b 2 x d x = sin ( ( b 1 b 2 ) x ) 2 ( b 1 b 2 ) sin ( ( b 1 + b 2 ) x ) 2 ( b 1 + b 2 ) + C ( | b 1 | | b 2 | ) {\displaystyle \int \sin b_{1}x\sin b_{2}x\;\mathrm {d} x={\frac {\sin((b_{1}-b_{2})x)}{2(b_{1}-b_{2})}}-{\frac {\sin((b_{1}+b_{2})x)}{2(b_{1}+b_{2})}}+C\qquad {\mbox{(}}|b_{1}|\neq |b_{2}|{\mbox{)}}\,\!}
sin n a x d x = sin n 1 a x cos a x n a + n 1 n sin n 2 a x d x ( n > 2 ) {\displaystyle \int \sin ^{n}{ax}\;\mathrm {d} x=-{\frac {\sin ^{n-1}ax\cos ax}{na}}+{\frac {n-1}{n}}\int \sin ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(}}n>2{\mbox{)}}\,\!}
d x sin a x = 1 a ln | tan a x 2 | + C {\displaystyle \int {\frac {\mathrm {d} x}{\sin ax}}={\frac {1}{a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
d x sin n a x = cos a x a ( 1 n ) sin n 1 a x + n 2 n 1 d x sin n 2 a x ( n > 1 ) {\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}ax}}={\frac {\cos ax}{a(1-n)\sin ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\sin ^{n-2}ax}}\qquad {\mbox{(}}n>1{\mbox{)}}\,\!}
x sin a x d x = sin a x a 2 x cos a x a + C {\displaystyle \int x\sin ax\;\mathrm {d} x={\frac {\sin ax}{a^{2}}}-{\frac {x\cos ax}{a}}+C\,\!}
x n sin a x d x = x n a cos a x + n a x n 1 cos a x d x = k = 0 2 k n ( 1 ) k + 1 x n 2 k a 1 + 2 k n ! ( n 2 k ) ! cos a x + k = 0 2 k + 1 n ( 1 ) k x n 1 2 k a 2 + 2 k n ! ( n 2 k 1 ) ! sin a x ( n > 0 ) {\displaystyle \int x^{n}\sin ax\;\mathrm {d} x=-{\frac {x^{n}}{a}}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\;\mathrm {d} x=\sum _{k=0}^{2k\leq n}(-1)^{k+1}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\cos ax+\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-1-2k}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\sin ax\qquad {\mbox{(}}n>0{\mbox{)}}\,\!}
a 2 a 2 x 2 sin 2 n π x a d x = a 3 ( n 2 π 2 6 ) 24 n 2 π 2 ( n = 2 , 4 , 6... ) {\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;\mathrm {d} x={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=2,4,6...{\mbox{)}}\,\!}
sin a x x d x = n = 0 ( 1 ) n ( a x ) 2 n + 1 ( 2 n + 1 ) ( 2 n + 1 ) ! + C {\displaystyle \int {\frac {\sin ax}{x}}\mathrm {d} x=\sum _{n=0}^{\infty }(-1)^{n}{\frac {(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!}}+C\,\!}
sin a x x n d x = sin a x ( n 1 ) x n 1 + a n 1 cos a x x n 1 d x {\displaystyle \int {\frac {\sin ax}{x^{n}}}\mathrm {d} x=-{\frac {\sin ax}{(n-1)x^{n-1}}}+{\frac {a}{n-1}}\int {\frac {\cos ax}{x^{n-1}}}\mathrm {d} x\,\!}
d x 1 ± sin a x = 1 a tan ( a x 2 π 4 ) + C {\displaystyle \int {\frac {\mathrm {d} x}{1\pm \sin ax}}={\frac {1}{a}}\tan \left({\frac {ax}{2}}\mp {\frac {\pi }{4}}\right)+C}
x d x 1 + sin a x = x a tan ( a x 2 π 4 ) + 2 a 2 ln | cos ( a x 2 π 4 ) | + C {\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\sin ax}}={\frac {x}{a}}\tan \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{a^{2}}}\ln \left|\cos \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)\right|+C}
x d x 1 sin a x = x a cot ( π 4 a x 2 ) + 2 a 2 ln | sin ( π 4 a x 2 ) | + C {\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\sin ax}}={\frac {x}{a}}\cot \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)+{\frac {2}{a^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)\right|+C}
sin a x d x 1 ± sin a x = ± x + 1 a tan ( π 4 a x 2 ) + C {\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{1\pm \sin ax}}=\pm x+{\frac {1}{a}}\tan \left({\frac {\pi }{4}}\mp {\frac {ax}{2}}\right)+C}

余弦関数のみを含む式の原始関数

cos a x d x = 1 a sin a x + C {\displaystyle \int \cos ax\;\mathrm {d} x={\frac {1}{a}}\sin ax+C\,\!}
cos 2 a x d x = x 2 + 1 4 a sin 2 a x + C = x 2 + 1 2 a sin a x cos a x + C {\displaystyle \int \cos ^{2}{ax}\;\mathrm {d} x={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C\!}
cos n a x d x = cos n 1 a x sin a x n a + n 1 n cos n 2 a x d x ( n > 0 ) {\displaystyle \int \cos ^{n}ax\;\mathrm {d} x={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(}}n>0{\mbox{)}}\,\!}
x cos a x d x = cos a x a 2 + x sin a x a + C {\displaystyle \int x\cos ax\;\mathrm {d} x={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C\,\!}
x 2 cos 2 a x d x = x 3 6 + ( x 2 4 a 1 8 a 3 ) sin 2 a x + x 4 a 2 cos 2 a x + C {\displaystyle \int x^{2}\cos ^{2}{ax}\;\mathrm {d} x={\frac {x^{3}}{6}}+\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax+{\frac {x}{4a^{2}}}\cos 2ax+C\!}
x n cos a x d x = x n sin a x a n a x n 1 sin a x d x = k = 0 2 k + 1 n ( 1 ) k x n 2 k 1 a 2 + 2 k n ! ( n 2 k 1 ) ! cos a x + k = 0 2 k n ( 1 ) k x n 2 k a 1 + 2 k n ! ( n 2 k ) ! sin a x {\displaystyle \int x^{n}\cos ax\;\mathrm {d} x={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\;\mathrm {d} x\,=\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-2k-1}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\cos ax+\sum _{k=0}^{2k\leq n}(-1)^{k}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\sin ax\!}
cos a x x d x = ln | a x | + k = 1 ( 1 ) k ( a x ) 2 k 2 k ( 2 k ) ! + C {\displaystyle \int {\frac {\cos ax}{x}}\mathrm {d} x=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C\,\!}
cos a x x n d x = cos a x ( n 1 ) x n 1 a n 1 sin a x x n 1 d x ( n 1 ) {\displaystyle \int {\frac {\cos ax}{x^{n}}}\mathrm {d} x=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
d x cos a x = 1 a ln | tan ( a x 2 + π 4 ) | + C = 1 a gd 1 ( a x ) + C {\displaystyle \int {\frac {\mathrm {d} x}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C={\frac {1}{a}}\operatorname {gd} ^{-1}(ax)+C}
d x cos n a x = sin a x a ( n 1 ) cos n 1 a x + n 2 n 1 d x cos n 2 a x ( n > 1 ) {\displaystyle \int {\frac {\mathrm {d} x}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\cos ^{n-2}ax}}\qquad {\mbox{(}}n>1{\mbox{)}}\,\!}
d x 1 + cos a x = 1 a tan a x 2 + C {\displaystyle \int {\frac {\mathrm {d} x}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
d x 1 cos a x = 1 a cot a x 2 + C {\displaystyle \int {\frac {\mathrm {d} x}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
x d x 1 + cos a x = x a tan a x 2 + 2 a 2 ln | cos a x 2 | + C {\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}
x d x 1 cos a x = x a cot a x 2 + 2 a 2 ln | sin a x 2 | + C {\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}
cos a x d x 1 + cos a x = x 1 a tan a x 2 + C {\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
cos a x d x 1 cos a x = x 1 a cot a x 2 + C {\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
cos a 1 x cos a 2 x d x = sin ( a 1 a 2 ) x 2 ( a 1 a 2 ) + sin ( a 1 + a 2 ) x 2 ( a 1 + a 2 ) + C ( | a 1 | | a 2 | ) {\displaystyle \int \cos a_{1}x\cos a_{2}x\;\mathrm {d} x={\frac {\sin(a_{1}-a_{2})x}{2(a_{1}-a_{2})}}+{\frac {\sin(a_{1}+a_{2})x}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(}}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}

正接関数のみを含む式の原始関数

tan a x d x = 1 a ln | cos a x | + C = 1 a ln | sec a x | + C {\displaystyle \int \tan ax\;\mathrm {d} x=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C\,\!}
tan n a x d x = 1 a ( n 1 ) tan n 1 a x tan n 2 a x d x ( n 1 ) {\displaystyle \int \tan ^{n}ax\;\mathrm {d} x={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
d x q tan a x + p = 1 p 2 + q 2 ( p x + q a ln | q sin a x + p cos a x | ) + C ( p 2 + q 2 0 ) {\displaystyle \int {\frac {\mathrm {d} x}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad {\mbox{(}}p^{2}+q^{2}\neq 0{\mbox{)}}\,\!}
d x tan a x + 1 = x 2 + 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\mathrm {d} x}{\tan ax+1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
d x tan a x 1 = x 2 + 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\mathrm {d} x}{\tan ax-1}}=-{\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
tan a x d x tan a x + 1 = x 2 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\tan ax\;\mathrm {d} x}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
tan a x d x tan a x 1 = x 2 + 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\tan ax\;\mathrm {d} x}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}

正割関数のみを含む式の原始関数

sec a x d x = 1 a ln | sec a x + tan a x | + C = 1 a gd 1 ( a x ) + C {\displaystyle \int \sec {ax}\,\mathrm {d} x={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C={\frac {1}{a}}\operatorname {gd} ^{-1}(ax)+C}
sec 2 x d x = tan x + C {\displaystyle \int \sec ^{2}{x}\,\mathrm {d} x=\tan {x}+C}
sec n a x d x = sec n 2 a x tan a x a ( n 1 ) + n 2 n 1 sec n 2 a x d x ( n 1 ) {\displaystyle \int \sec ^{n}{ax}\,\mathrm {d} x={\frac {\sec ^{n-2}{ax}\tan {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{ax}\,\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
sec n x d x = sec n 2 x tan x n 1 + n 2 n 1 sec n 2 x d x {\displaystyle \int \sec ^{n}{x}\,\mathrm {d} x={\frac {\sec ^{n-2}{x}\tan {x}}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{x}\,\mathrm {d} x} [1]
d x sec x + 1 = x tan x 2 + C {\displaystyle \int {\frac {\mathrm {d} x}{\sec {x}+1}}=x-\tan {\frac {x}{2}}+C}
d x sec x 1 = x cot x 2 + C {\displaystyle \int {\frac {\mathrm {d} x}{\sec {x}-1}}=-x-\cot {\frac {x}{2}}+C}


余割関数のみを含む式の原始関数

csc a x d x = 1 a ln | csc a x + cot a x | + C {\displaystyle \int \csc {ax}\,\mathrm {d} x=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}
csc 2 x d x = cot x + C {\displaystyle \int \csc ^{2}{x}\,\mathrm {d} x=-\cot {x}+C}
csc n a x d x = csc n 1 a x cos a x a ( n 1 ) + n 2 n 1 csc n 2 a x d x ( n 1 ) {\displaystyle \int \csc ^{n}{ax}\,\mathrm {d} x=-{\frac {\csc ^{n-1}{ax}\cos {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{ax}\,\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
d x csc x + 1 = x 2 sin x 2 cos x 2 + sin x 2 + C {\displaystyle \int {\frac {\mathrm {d} x}{\csc {x}+1}}=x-{\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}}+C}
d x csc x 1 = 2 sin x 2 cos x 2 sin x 2 x + C {\displaystyle \int {\frac {\mathrm {d} x}{\csc {x}-1}}={\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}-x+C}

余接関数のみを含む式の原始関数

cot a x d x = 1 a ln | sin a x | + C {\displaystyle \int \cot ax\;\mathrm {d} x={\frac {1}{a}}\ln |\sin ax|+C\,\!}
cot n a x d x = 1 a ( n 1 ) cot n 1 a x cot n 2 a x d x ( n 1 ) {\displaystyle \int \cot ^{n}ax\;\mathrm {d} x=-{\frac {1}{a(n-1)}}\cot ^{n-1}ax-\int \cot ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
d x 1 + cot a x = tan a x d x tan a x + 1 {\displaystyle \int {\frac {\mathrm {d} x}{1+\cot ax}}=\int {\frac {\tan ax\;\mathrm {d} x}{\tan ax+1}}\,\!}
d x 1 cot a x = tan a x d x tan a x 1 {\displaystyle \int {\frac {\mathrm {d} x}{1-\cot ax}}=\int {\frac {\tan ax\;\mathrm {d} x}{\tan ax-1}}\,\!}

正弦関数と余弦関数を含む式の原始関数

d x cos a x ± sin a x = 1 a 2 ln | tan ( a x 2 ± π 8 ) | + C {\displaystyle \int {\frac {\mathrm {d} x}{\cos ax\pm \sin ax}}={\frac {1}{a{\sqrt {2}}}}\ln \left|\tan \left({\frac {ax}{2}}\pm {\frac {\pi }{8}}\right)\right|+C}
d x ( cos a x ± sin a x ) 2 = 1 2 a tan ( a x π 4 ) + C {\displaystyle \int {\frac {\mathrm {d} x}{(\cos ax\pm \sin ax)^{2}}}={\frac {1}{2a}}\tan \left(ax\mp {\frac {\pi }{4}}\right)+C}
d x ( cos x + sin x ) n = 1 n 1 ( sin x cos x ( cos x + sin x ) n 1 2 ( n 2 ) d x ( cos x + sin x ) n 2 ) {\displaystyle \int {\frac {\mathrm {d} x}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {\mathrm {d} x}{(\cos x+\sin x)^{n-2}}}\right)}
cos a x d x cos a x + sin a x = x 2 + 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\cos ax+\sin ax}}={\frac {x}{2}}+{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
cos a x d x cos a x sin a x = x 2 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\cos ax-\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
sin a x d x cos a x + sin a x = x 2 1 2 a ln | sin a x + cos a x | + C {\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax+\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
sin a x d x cos a x sin a x = x 2 1 2 a ln | sin a x cos a x | + C {\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax-\sin ax}}=-{\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
cos a x d x sin a x ( 1 + cos a x ) = 1 4 a tan 2 a x 2 + 1 2 a ln | tan a x 2 | + C {\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\sin ax(1+\cos ax)}}=-{\frac {1}{4a}}\tan ^{2}{\frac {ax}{2}}+{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
cos a x d x sin a x ( 1 cos a x ) = 1 4 a cot 2 a x 2 1 2 a ln | tan a x 2 | + C {\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\sin ax(1-\cos ax)}}=-{\frac {1}{4a}}\cot ^{2}{\frac {ax}{2}}-{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
sin a x d x cos a x ( 1 + sin a x ) = 1 4 a cot 2 ( a x 2 + π 4 ) + 1 2 a ln | tan ( a x 2 + π 4 ) | + C {\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax(1+\sin ax)}}={\frac {1}{4a}}\cot ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
sin a x d x cos a x ( 1 sin a x ) = 1 4 a tan 2 ( a x 2 + π 4 ) 1 2 a ln | tan ( a x 2 + π 4 ) | + C {\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax(1-\sin ax)}}={\frac {1}{4a}}\tan ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
sin a x cos a x d x = 1 2 a cos 2 a x + C {\displaystyle \int \sin ax\cos ax\;\mathrm {d} x=-{\frac {1}{2a}}\cos ^{2}ax+C\,\!}
sin a 1 x cos a 2 x d x = cos ( ( a 1 a 2 ) x ) 2 ( a 1 a 2 ) cos ( ( a 1 + a 2 ) x ) 2 ( a 1 + a 2 ) + C ( | a 1 | | a 2 | ) {\displaystyle \int \sin a_{1}x\cos a_{2}x\;\mathrm {d} x=-{\frac {\cos((a_{1}-a_{2})x)}{2(a_{1}-a_{2})}}-{\frac {\cos((a_{1}+a_{2})x)}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(}}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}
sin n a x cos a x d x = 1 a ( n + 1 ) sin n + 1 a x + C ( n 1 ) {\displaystyle \int \sin ^{n}ax\cos ax\;\mathrm {d} x={\frac {1}{a(n+1)}}\sin ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}\,\!}
sin a x cos n a x d x = 1 a ( n + 1 ) cos n + 1 a x + C ( n 1 ) {\displaystyle \int \sin ax\cos ^{n}ax\;\mathrm {d} x=-{\frac {1}{a(n+1)}}\cos ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}\,\!}
sin n a x cos m a x d x = sin n 1 a x cos m + 1 a x a ( n + m ) + n 1 n + m sin n 2 a x cos m a x d x ( m , n > 0 ) {\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;\mathrm {d} x=-{\frac {\sin ^{n-1}ax\cos ^{m+1}ax}{a(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}ax\cos ^{m}ax\;\mathrm {d} x\qquad {\mbox{(}}m,n>0{\mbox{)}}\,\!}
または sin n a x cos m a x d x = sin n + 1 a x cos m 1 a x a ( n + m ) + m 1 n + m sin n a x cos m 2 a x d x ( m , n > 0 ) {\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;\mathrm {d} x={\frac {\sin ^{n+1}ax\cos ^{m-1}ax}{a(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}ax\cos ^{m-2}ax\;\mathrm {d} x\qquad {\mbox{(}}m,n>0{\mbox{)}}\,\!}
d x sin a x cos a x = 1 a ln | tan a x | + C {\displaystyle \int {\frac {\mathrm {d} x}{\sin ax\cos ax}}={\frac {1}{a}}\ln \left|\tan ax\right|+C}
d x sin a x cos n a x = 1 a ( n 1 ) cos n 1 a x + d x sin a x cos n 2 a x ( n 1 ) {\displaystyle \int {\frac {\mathrm {d} x}{\sin ax\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+\int {\frac {\mathrm {d} x}{\sin ax\cos ^{n-2}ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
d x sin n a x cos a x = 1 a ( n 1 ) sin n 1 a x + d x sin n 2 a x cos a x ( n 1 ) {\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}ax\cos ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}ax\cos ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
sin a x d x cos n a x = 1 a ( n 1 ) cos n 1 a x + C ( n 1 ) {\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
sin 2 a x d x cos a x = 1 a sin a x + 1 a ln | tan ( π 4 + a x 2 ) | + C {\displaystyle \int {\frac {\sin ^{2}ax\;\mathrm {d} x}{\cos ax}}=-{\frac {1}{a}}\sin ax+{\frac {1}{a}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {ax}{2}}\right)\right|+C}
sin 2 a x d x cos n a x = sin a x a ( n 1 ) cos n 1 a x 1 n 1 d x cos n 2 a x ( n 1 ) {\displaystyle \int {\frac {\sin ^{2}ax\;\mathrm {d} x}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}-{\frac {1}{n-1}}\int {\frac {\mathrm {d} x}{\cos ^{n-2}ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
sin n a x d x cos a x = sin n 1 a x a ( n 1 ) + sin n 2 a x d x cos a x ( n 1 ) {\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ax}}=-{\frac {\sin ^{n-1}ax}{a(n-1)}}+\int {\frac {\sin ^{n-2}ax\;\mathrm {d} x}{\cos ax}}\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
sin n a x d x cos m a x = sin n + 1 a x a ( m 1 ) cos m 1 a x n m + 2 m 1 sin n a x d x cos m 2 a x ( m 1 ) {\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m}ax}}={\frac {\sin ^{n+1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m-2}ax}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}\,\!}
または sin n a x d x cos m a x = sin n 1 a x a ( n m ) cos m 1 a x + n 1 n m sin n 2 a x d x cos m a x ( m n ) {\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m}ax}}=-{\frac {\sin ^{n-1}ax}{a(n-m)\cos ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}ax\;\mathrm {d} x}{\cos ^{m}ax}}\qquad {\mbox{(}}m\neq n{\mbox{)}}\,\!}
または sin n a x d x cos m a x = sin n 1 a x a ( m 1 ) cos m 1 a x n 1 m 1 sin n 2 a x d x cos m 2 a x ( m 1 ) {\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m}ax}}={\frac {\sin ^{n-1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-2}ax\;\mathrm {d} x}{\cos ^{m-2}ax}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}\,\!}
cos a x d x sin n a x = 1 a ( n 1 ) sin n 1 a x + C ( n 1 ) {\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\sin ^{n}ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}
cos 2 a x d x sin a x = 1 a ( cos a x + ln | tan a x 2 | ) + C {\displaystyle \int {\frac {\cos ^{2}ax\;\mathrm {d} x}{\sin ax}}={\frac {1}{a}}\left(\cos ax+\ln \left|\tan {\frac {ax}{2}}\right|\right)+C}
cos 2 a x d x sin n a x = 1 n 1 ( cos a x a sin n 1 a x ) + d x sin n 2 a x ) ( n 1 ) {\displaystyle \int {\frac {\cos ^{2}ax\;\mathrm {d} x}{\sin ^{n}ax}}=-{\frac {1}{n-1}}\left({\frac {\cos ax}{a\sin ^{n-1}ax)}}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}ax}}\right)\qquad {\mbox{(}}n\neq 1{\mbox{)}}}
cos n a x d x sin m a x = cos n + 1 a x a ( m 1 ) sin m 1 a x n m 2 m 1 cos n a x d x sin m 2 a x ( m 1 ) {\displaystyle \int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m}ax}}=-{\frac {\cos ^{n+1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-m-2}{m-1}}\int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m-2}ax}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}\,\!}
または cos n a x d x sin m a x = cos n 1 a x a ( n m ) sin m 1 a x + n 1 n m cos n 2 a x d x sin m a x ( m n ) {\displaystyle \int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m}ax}}={\frac {\cos ^{n-1}ax}{a(n-m)\sin ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cos ^{n-2}ax\;\mathrm {d} x}{\sin ^{m}ax}}\qquad {\mbox{(}}m\neq n{\mbox{)}}\,\!}
または cos n a x d x sin m a x = cos n 1 a x a ( m 1 ) sin m 1 a x n 1 m 1 cos n 2 a x d x sin m 2 a x ( m 1 ) {\displaystyle \int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m}ax}}=-{\frac {\cos ^{n-1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\cos ^{n-2}ax\;\mathrm {d} x}{\sin ^{m-2}ax}}\qquad {\mbox{(}}m\neq 1{\mbox{)}}\,\!}

正弦関数と正接関数を含む式の原始関数

sin a x tan a x d x = 1 a ( ln | sec a x + tan a x | sin a x ) + C {\displaystyle \int \sin ax\tan ax\;\mathrm {d} x={\frac {1}{a}}(\ln |\sec ax+\tan ax|-\sin ax)+C\,\!}
tan n a x d x sin 2 a x = 1 a ( n 1 ) tan n 1 ( a x ) + C ( n 1 ) {\displaystyle \int {\frac {\tan ^{n}ax\;\mathrm {d} x}{\sin ^{2}ax}}={\frac {1}{a(n-1)}}\tan ^{n-1}(ax)+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}

余弦関数と正接関数を含む式の原始関数

tan n a x d x cos 2 a x = 1 a ( n + 1 ) tan n + 1 a x + C ( n 1 ) {\displaystyle \int {\frac {\tan ^{n}ax\;\mathrm {d} x}{\cos ^{2}ax}}={\frac {1}{a(n+1)}}\tan ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}\,\!}

正弦関数と余接関数を含む式の原始関数

cot n a x d x sin 2 a x = 1 a ( n + 1 ) cot n + 1 a x + C ( n 1 ) {\displaystyle \int {\frac {\cot ^{n}ax\;\mathrm {d} x}{\sin ^{2}ax}}=-{\frac {1}{a(n+1)}}\cot ^{n+1}ax+C\qquad {\mbox{(}}n\neq -1{\mbox{)}}\,\!}

余弦関数と余接関数を含む式の原始関数

cot n a x d x cos 2 a x = 1 a ( 1 n ) tan 1 n a x + C ( n 1 ) {\displaystyle \int {\frac {\cot ^{n}ax\;\mathrm {d} x}{\cos ^{2}ax}}={\frac {1}{a(1-n)}}\tan ^{1-n}ax+C\qquad {\mbox{(}}n\neq 1{\mbox{)}}\,\!}

対称性を利用した定積分の計算

c c sin x d x = 0 {\displaystyle \int _{-c}^{c}\sin {x}\;\mathrm {d} x=0\!}
c c cos x d x = 2 0 c cos x d x = 2 c 0 cos x d x = 2 sin c {\displaystyle \int _{-c}^{c}\cos {x}\;\mathrm {d} x=2\int _{0}^{c}\cos {x}\;\mathrm {d} x=2\int _{-c}^{0}\cos {x}\;\mathrm {d} x=2\sin {c}\!}
c c tan x d x = 0 {\displaystyle \int _{-c}^{c}\tan {x}\;\mathrm {d} x=0\!}
a 2 a 2 x 2 cos 2 n π x a d x = a 3 ( n 2 π 2 6 ) 24 n 2 π 2 ( n = 1 , 3 , 5... ) {\displaystyle \int _{-{\frac {a}{2}}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;\mathrm {d} x={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(}}n=1,3,5...{\mbox{)}}\,\!}

参照

  1. ^ Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008

関連項目