Deribatu taula

Kalkulu diferentzialean egiten den eragiketarik ohikoenetarikoa da funtzio baten deribatua aurkitzea. Taula honen laguntzaz esker edozein funtzio elementalen deribatua kalkula daiteke. Esan beharra dago, taulako f eta g funtzioak deribagarriak eta c zenbaki errealak direla suposatuko dela.

Funtzio orokorren deribaziorako arauak

Diferentzialaren linealtasuna
( c f ) = c f {\displaystyle \left({cf}\right)'=cf'}
( f + g ) = f + g {\displaystyle \left({f+g}\right)'=f'+g'}
( f g ) = f g {\displaystyle \left({f-g}\right)'=f'-g'}


Biderkaduraren deribatua
( f g ) = f g + f g {\displaystyle \left({fg}\right)'=f'g+fg'}


Zatiduraren deribatua
( f g ) = f g f g g 2 , g 0 {\displaystyle \left({f \over g}\right)'={f'g-fg' \over g^{2}},\qquad g\neq 0}


Funtzio potentzialaren deribatua
( f g ) = ( e g ln f ) = f g ( f g f + g ln f ) , f > 0 {\displaystyle (f^{g})'=\left(e^{g\ln f}\right)'=f^{g}\left(f'{g \over f}+g'\ln f\right),\qquad f>0}


Funtzio konposatuaren edo katearen erregela
( f g ) = ( f g ) g {\displaystyle (f\circ g)'=(f'\circ g)g'}


Logaritmoaren deribatua
f = ( ln f ) f , f > 0 {\displaystyle f'=(\ln f)'f,\qquad f>0}

Funtzio sinpleen deribatuak

d d x c = 0 {\displaystyle {d \over dx}c=0}
d d x x = 1 {\displaystyle {d \over dx}x=1}
d d x c x = c {\displaystyle {d \over dx}cx=c}
d d x | x | = | x | x = sgn x , x 0 {\displaystyle {d \over dx}|x|={|x| \over x}=\operatorname {sgn} x,\qquad x\neq 0}
d d x x c = c x c 1 where both  x c  and  c x c 1  are defined {\displaystyle {d \over dx}x^{c}=cx^{c-1}\qquad {\mbox{where both }}x^{c}{\mbox{ and }}cx^{c-1}{\mbox{ are defined}}}
d d x ( 1 x ) = d d x ( x 1 ) = x 2 = 1 x 2 {\displaystyle {d \over dx}\left({1 \over x}\right)={d \over dx}\left(x^{-1}\right)=-x^{-2}=-{1 \over x^{2}}}
d d x ( 1 x c ) = d d x ( x c ) = c x c + 1 {\displaystyle {d \over dx}\left({1 \over x^{c}}\right)={d \over dx}\left(x^{-c}\right)=-{c \over x^{c+1}}}
d d x x = d d x x 1 2 = 1 2 x 1 2 = 1 2 x , x > 0 {\displaystyle {d \over dx}{\sqrt {x}}={d \over dx}x^{1 \over 2}={1 \over 2}x^{-{1 \over 2}}={1 \over 2{\sqrt {x}}},\qquad x>0}

Funtzio esponentzial eta logaritmikoen deribatuak

d d x c x = c x ln c , c > 0 {\displaystyle {d \over dx}c^{x}={c^{x}\ln c},\qquad c>0}
d d x e x = e x {\displaystyle {d \over dx}e^{x}=e^{x}}
d d x log c x = 1 x ln c , c > 0 , c 1 {\displaystyle {d \over dx}\log _{c}x={1 \over x\ln c},\qquad c>0,c\neq 1}
d d x ln x = 1 x , x > 0 {\displaystyle {d \over dx}\ln x={1 \over x},\qquad x>0}
d d x ln | x | = 1 x {\displaystyle {d \over dx}\ln |x|={1 \over x}}
d d x x x = x x ( 1 + ln x ) {\displaystyle {d \over dx}x^{x}=x^{x}(1+\ln x)}

Funtzio trigonometrikoen deribatuak

d d x sin x = cos x {\displaystyle {d \over dx}\sin x=\cos x}
d d x cos x = sin x {\displaystyle {d \over dx}\cos x=-\sin x}
d d x tan x = sec 2 x = 1 cos 2 x {\displaystyle {d \over dx}\tan x=\sec ^{2}x={1 \over \cos ^{2}x}}
d d x sec x = tan x sec x {\displaystyle {d \over dx}\sec x=\tan x\sec x}
d d x cot x = csc 2 x = 1 sin 2 x {\displaystyle {d \over dx}\cot x=-\csc ^{2}x={-1 \over \sin ^{2}x}}
d d x csc x = csc x cot x {\displaystyle {d \over dx}\csc x=-\csc x\cot x}
d d x arcsin x = 1 1 x 2 {\displaystyle {d \over dx}\arcsin x={1 \over {\sqrt {1-x^{2}}}}}
d d x arccos x = 1 1 x 2 {\displaystyle {d \over dx}\arccos x={-1 \over {\sqrt {1-x^{2}}}}}
d d x arctan x = 1 1 + x 2 {\displaystyle {d \over dx}\arctan x={1 \over 1+x^{2}}}
d d x arcsec x = 1 | x | x 2 1 {\displaystyle {d \over dx}\operatorname {arcsec} x={1 \over |x|{\sqrt {x^{2}-1}}}}
d d x arccot x = 1 1 + x 2 {\displaystyle {d \over dx}\operatorname {arccot} x={-1 \over 1+x^{2}}}
d d x arccsc x = 1 | x | x 2 1 {\displaystyle {d \over dx}\operatorname {arccsc} x={-1 \over |x|{\sqrt {x^{2}-1}}}}


Funtzio hiperbolikoen deribatuak

d d x sinh x = cosh x {\displaystyle {d \over dx}\sinh x=\cosh x}
d d x cosh x = sinh x {\displaystyle {d \over dx}\cosh x=\sinh x}
d d x tanh x = sech 2 x {\displaystyle {d \over dx}\tanh x=\operatorname {sech} ^{2}\,x}
d d x sech x = tanh x sech x {\displaystyle {d \over dx}\,\operatorname {sech} \,x=-\tanh x\,\operatorname {sech} \,x}
d d x coth x = csch 2 x {\displaystyle {d \over dx}\,\operatorname {coth} \,x=-\,\operatorname {csch} ^{2}\,x}
d d x csch x = coth x csch x {\displaystyle {d \over dx}\,\operatorname {csch} \,x=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x}
d d x arcsinh x = 1 x 2 + 1 {\displaystyle {d \over dx}\,\operatorname {arcsinh} \,x={1 \over {\sqrt {x^{2}+1}}}}
d d x arccosh x = 1 x 2 1 {\displaystyle {d \over dx}\,\operatorname {arccosh} \,x={1 \over {\sqrt {x^{2}-1}}}}
d d x arctanh x = 1 1 x 2 {\displaystyle {d \over dx}\,\operatorname {arctanh} \,x={1 \over 1-x^{2}}}
d d x arcsech x = 1 x 1 x 2 {\displaystyle {d \over dx}\,\operatorname {arcsech} \,x={-1 \over x{\sqrt {1-x^{2}}}}}
d d x arccoth x = 1 1 x 2 {\displaystyle {d \over dx}\,\operatorname {arccoth} \,x={1 \over 1-x^{2}}}
d d x arccsch x = 1 | x | 1 + x 2 {\displaystyle {d \over dx}\,\operatorname {arccsch} \,x={-1 \over |x|{\sqrt {1+x^{2}}}}}

.