Werner state

A Werner state[1] is a d 2 {\displaystyle d^{2}} × d 2 {\displaystyle d^{2}} -dimensional bipartite quantum state density matrix that is invariant under all unitary operators of the form U U {\displaystyle U\otimes U} . That is, it is a bipartite quantum state ρ A B {\displaystyle \rho _{AB}} that satisfies

ρ A B = ( U U ) ρ A B ( U U ) {\displaystyle \rho _{AB}=(U\otimes U)\rho _{AB}(U^{\dagger }\otimes U^{\dagger })}

for all unitary operators U acting on d-dimensional Hilbert space. These states were first developed by Reinhard F. Werner in 1989.

General definition

Every Werner state W A B ( p , d ) {\displaystyle W_{AB}^{(p,d)}} is a mixture of projectors onto the symmetric and antisymmetric subspaces, with the relative weight p [ 0 , 1 ] {\displaystyle p\in [0,1]} being the main parameter that defines the state, in addition to the dimension d 2 {\displaystyle d\geq 2} :

W A B ( p , d ) = p 2 d ( d + 1 ) P A B sym + ( 1 p ) 2 d ( d 1 ) P A B as , {\displaystyle W_{AB}^{(p,d)}=p{\frac {2}{d(d+1)}}P_{AB}^{\text{sym}}+(1-p){\frac {2}{d(d-1)}}P_{AB}^{\text{as}},}

where

P A B sym = 1 2 ( I A B + F A B ) , {\displaystyle P_{AB}^{\text{sym}}={\frac {1}{2}}(I_{AB}+F_{AB}),}
P A B as = 1 2 ( I A B F A B ) , {\displaystyle P_{AB}^{\text{as}}={\frac {1}{2}}(I_{AB}-F_{AB}),}

are the projectors and

F A B = i j | i j | A | j i | B {\displaystyle F_{AB}=\sum _{ij}|i\rangle \langle j|_{A}\otimes |j\rangle \langle i|_{B}}

is the permutation or flip operator that exchanges the two subsystems A and B.

Werner states are separable for p12 and entangled for p < 12. All entangled Werner states violate the PPT separability criterion, but for d ≥ 3 no Werner state violates the weaker reduction criterion. Werner states can be parametrized in different ways. One way of writing them is

ρ A B = 1 d 2 d α ( I A B α F A B ) , {\displaystyle \rho _{AB}={\frac {1}{d^{2}-d\alpha }}(I_{AB}-\alpha F_{AB}),}

where the new parameter α varies between −1 and 1 and relates to p as

α = ( ( 1 2 p ) d + 1 ) / ( 1 2 p + d ) . {\displaystyle \alpha =((1-2p)d+1)/(1-2p+d).}

Two-qubit example

Two-qubit Werner states, corresponding to d = 2 {\displaystyle d=2} above, can be written explicitly in matrix form as

W A B ( p , 2 ) = p 6 ( 2 0 0 0 0 1 1 0 0 1 1 0 0 0 0 2 ) + ( 1 p ) 2 ( 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 ) = ( p 3 0 0 0 0 3 2 p 6 3 + 4 p 6 0 0 3 + 4 p 6 3 2 p 6 0 0 0 0 p 3 ) . {\displaystyle W_{AB}^{(p,2)}={\frac {p}{6}}{\begin{pmatrix}2&0&0&0\\0&1&1&0\\0&1&1&0\\0&0&0&2\end{pmatrix}}+{\frac {(1-p)}{2}}{\begin{pmatrix}0&0&0&0\\0&1&-1&0\\0&-1&1&0\\0&0&0&0\end{pmatrix}}={\begin{pmatrix}{\frac {p}{3}}&0&0&0\\0&{\frac {3-2p}{6}}&{\frac {-3+4p}{6}}&0\\0&{\frac {-3+4p}{6}}&{\frac {3-2p}{6}}&0\\0&0&0&{\frac {p}{3}}\end{pmatrix}}.}
Equivalently, these can be written as a convex combination of the totally mixed state with (the projection onto) a Bell state:
W A B ( λ , 2 ) = λ | Ψ Ψ | + 1 λ 4 I A B , | Ψ 1 2 ( | 01 | 10 ) , {\displaystyle W_{AB}^{(\lambda ,2)}=\lambda |\Psi ^{-}\rangle \!\langle \Psi ^{-}|+{\frac {1-\lambda }{4}}I_{AB},\qquad |\Psi ^{-}\rangle \equiv {\frac {1}{\sqrt {2}}}(|01\rangle -|10\rangle ),}
where λ [ 1 / 3 , 1 ] {\displaystyle \lambda \in [-1/3,1]} (or, confining oneself to positive values, λ [ 0 , 1 ] {\displaystyle \lambda \in [0,1]} ) is related to p {\displaystyle p} by λ = ( 3 4 p ) / 3 {\displaystyle \lambda =(3-4p)/3} . Then, two-qubit Werner states are separable for λ 1 / 3 {\displaystyle \lambda \leq 1/3} and entangled for λ > 1 / 3 {\displaystyle \lambda >1/3} .

Werner-Holevo channels

A Werner-Holevo quantum channel W A B ( p , d ) {\displaystyle {\mathcal {W}}_{A\rightarrow B}^{\left(p,d\right)}} with parameters p [ 0 , 1 ] {\displaystyle p\in \left[0,1\right]} and integer d 2 {\displaystyle d\geq 2} is defined as [2] [3] [4]

W A B ( p , d ) = p W A B sym + ( 1 p ) W A B as , {\displaystyle {\mathcal {W}}_{A\rightarrow B}^{\left(p,d\right)}=p{\mathcal {W}}_{A\rightarrow B}^{\text{sym}}+\left(1-p\right){\mathcal {W}}_{A\rightarrow B}^{\text{as}},}

where the quantum channels W A B sym {\displaystyle {\mathcal {W}}_{A\rightarrow B}^{\text{sym}}} and W A B as {\displaystyle {\mathcal {W}}_{A\rightarrow B}^{\text{as}}} are defined as

W A B sym ( X A ) = 1 d + 1 [ Tr [ X A ] I B + id A B ( T A ( X A ) ) ] , {\displaystyle {\mathcal {W}}_{A\rightarrow B}^{\text{sym}}(X_{A})={\frac {1}{d+1}}\left[\operatorname {Tr} [X_{A}]I_{B}+\operatorname {id} _{A\rightarrow B}(T_{A}(X_{A}))\right],}
W A B as ( X A ) = 1 d 1 [ Tr [ X A ] I B id A B ( T A ( X A ) ) ] , {\displaystyle {\mathcal {W}}_{A\rightarrow B}^{\text{as}}(X_{A})={\frac {1}{d-1}}\left[\operatorname {Tr} [X_{A}]I_{B}-\operatorname {id} _{A\rightarrow B}(T_{A}(X_{A}))\right],}

and T A {\displaystyle T_{A}} denotes the partial transpose map on system A. Note that the Choi state of the Werner-Holevo channel W A B p , d {\displaystyle {\mathcal {W}}_{A\rightarrow B}^{p,d}} is a Werner state:

W A B ( p , d ) ( Φ R A ) = p 2 d ( d + 1 ) P R B sym + ( 1 p ) 2 d ( d 1 ) P R B as , {\displaystyle {\mathcal {W}}_{A\rightarrow B}^{\left(p,d\right)}(\Phi _{RA})=p{\frac {2}{d\left(d+1\right)}}P_{RB}^{\text{sym}}+\left(1-p\right){\frac {2}{d\left(d-1\right)}}P_{RB}^{\text{as}},}

where Φ R A = 1 d i , j | i j | R | i j | A {\displaystyle \Phi _{RA}={\frac {1}{d}}\sum _{i,j}|i\rangle \langle j|_{R}\otimes |i\rangle \langle j|_{A}} .

Multipartite Werner states

Werner states can be generalized to the multipartite case.[5] An N-party Werner state is a state that is invariant under U U U {\displaystyle U\otimes U\otimes \cdots \otimes U} for any unitary U on a single subsystem. The Werner state is no longer described by a single parameter, but by N! − 1 parameters, and is a linear combination of the N! different permutations on N systems.

References

  1. ^ Reinhard F. Werner (1989). "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model". Physical Review A. 40 (8): 4277–4281. Bibcode:1989PhRvA..40.4277W. doi:10.1103/PhysRevA.40.4277. PMID 9902666.
  2. ^ Reinhard F. Werner and Alexander S. Holevo (2002). "Counterexample to an additivity conjecture for output purity of quantum channels". Journal of Mathematical Physics. 43 (9): 4353–4357. arXiv:quant-ph/0203003. Bibcode:2002JMP....43.4353W. doi:10.1063/1.1498491. S2CID 42832247.
  3. ^ Fannes, Mark; Haegeman, B.; Mosonyi, Milan; Vanpeteghem, D. (2004). "Additivity of minimal entropy out- put for a class of covariant channels". unpublished. arXiv:quant-ph/0410195. Bibcode:2004quant.ph.10195F.
  4. ^ Debbie Leung and William Matthews (2015). "On the power of PPT-preserving and non-signalling codes". IEEE Transactions on Information Theory. 61 (8): 4486–4499. arXiv:1406.7142. doi:10.1109/TIT.2015.2439953. S2CID 14083225.
  5. ^ Eggeling, Tilo; Werner, Reinhard (2001). "Separability properties of tripartite states with UxUxU-symmetry". Physical Review A. 63: 042111. arXiv:quant-ph/0010096. doi:10.1103/PhysRevA.63.042111. S2CID 119350302.
  • v
  • t
  • e