Half-side formula

Relation between the side lengths and angles of a spherical triangle
Spherical triangle

In spherical trigonometry, the half side formula relates the angles and lengths of the sides of spherical triangles, which are triangles drawn on the surface of a sphere and so have curved sides and do not obey the formulas for plane triangles.[1]

For a triangle A B C {\displaystyle \triangle ABC} on a sphere, the half-side formula is[2]

tan 1 2 a = cos ( S ) cos ( S A ) cos ( S B ) cos ( S C ) {\displaystyle {\begin{aligned}\tan {\tfrac {1}{2}}a&={\sqrt {\frac {-\cos(S)\,\cos(S-A)}{\cos(S-B)\,\cos(S-C)}}}\end{aligned}}}

where a, b, c are the angular lengths (measure of central angle, arc lengths normalized to a sphere of unit radius) of the sides opposite angles A, B, C respectively, and S = 1 2 ( A + B + C ) {\displaystyle S={\tfrac {1}{2}}(A+B+C)} is half the sum of the angles. Two more formulas can be obtained for b {\displaystyle b} and c {\displaystyle c} by permuting the labels A , B , C . {\displaystyle A,B,C.}

The polar dual relationship for a spherical triangle is the half-angle formula,

tan 1 2 A = sin ( s b ) sin ( s c ) sin ( s ) sin ( s a ) {\displaystyle {\begin{aligned}\tan {\tfrac {1}{2}}A&={\sqrt {\frac {\sin(s-b)\,\sin(s-c)}{\sin(s)\,\sin(s-a)}}}\end{aligned}}}

where semiperimeter s = 1 2 ( a + b + c ) {\displaystyle s={\tfrac {1}{2}}(a+b+c)} is half the sum of the sides. Again, two more formulas can be obtained by permuting the labels A , B , C . {\displaystyle A,B,C.}

Half-tangent variant

The same relationships can be written as rational equations of half-tangents (tangents of half-angles). If t a = tan 1 2 a , {\displaystyle t_{a}=\tan {\tfrac {1}{2}}a,} t b = tan 1 2 b , {\displaystyle t_{b}=\tan {\tfrac {1}{2}}b,} t c = tan 1 2 c , {\displaystyle t_{c}=\tan {\tfrac {1}{2}}c,} t A = tan 1 2 A , {\displaystyle t_{A}=\tan {\tfrac {1}{2}}A,} t B = tan 1 2 B , {\displaystyle t_{B}=\tan {\tfrac {1}{2}}B,} and t C = tan 1 2 C , {\displaystyle t_{C}=\tan {\tfrac {1}{2}}C,} then the half-side formula is equivalent to:

t a 2 = ( t B t C + t C t A + t A t B 1 ) ( t B t C + t C t A + t A t B + 1 ) ( t B t C t C t A + t A t B + 1 ) ( t B t C + t C t A t A t B + 1 ) . {\displaystyle {\begin{aligned}t_{a}^{2}&={\frac {{\bigl (}t_{B}t_{C}+t_{C}t_{A}+t_{A}t_{B}-1{\bigr )}{\bigl (}{-t_{B}t_{C}+t_{C}t_{A}+t_{A}t_{B}+1}{\bigr )}}{{\bigl (}t_{B}t_{C}-t_{C}t_{A}+t_{A}t_{B}+1{\bigr )}{\bigl (}t_{B}t_{C}+t_{C}t_{A}-t_{A}t_{B}+1{\bigr )}}}.\end{aligned}}}

and the half-angle formula is equivalent to:

t A 2 = ( t a t b + t c + t a t b t c ) ( t a + t b t c + t a t b t c ) ( t a + t b + t c t a t b t c ) ( t a + t b + t c + t a t b t c ) . {\displaystyle {\begin{aligned}t_{A}^{2}&={\frac {{\bigl (}t_{a}-t_{b}+t_{c}+t_{a}t_{b}t_{c}{\bigr )}{\bigl (}t_{a}+t_{b}-t_{c}+t_{a}t_{b}t_{c}{\bigr )}}{{\bigl (}t_{a}+t_{b}+t_{c}-t_{a}t_{b}t_{c}{\bigr )}{\bigl (}{-t_{a}+t_{b}+t_{c}+t_{a}t_{b}t_{c}}{\bigr )}}}.\end{aligned}}}

See also

References

  1. ^ Bronshtein, I. N.; Semendyayev, K. A.; Musiol, Gerhard; Mühlig, Heiner (2007), Handbook of Mathematics, Springer, p. 165, ISBN 9783540721222[1]
  2. ^ Nelson, David (2008), The Penguin Dictionary of Mathematics (4th ed.), Penguin UK, p. 529, ISBN 9780141920870.