FLEUR

FLEUR
Developer(s)The FLEUR team
Stable release
MaX-R7.1 / March 20, 2024; 2 months ago (2024-03-20)
Repositoryiffgit.fz-juelich.de/fleur/fleur
Written inFortran
Operating systemLinux
LicenseMIT License
Websitewww.flapw.de

The FLEUR code[1] (also Fleur or fleur) is an open-source scientific software package for the simulation of material properties of crystalline solids, thin films, and surfaces. It implements Kohn-Sham density functional theory (DFT) in terms of the all-electron full-potential linearized augmented-plane-wave method. With this, it is a realization of one of the most precise DFT methodologies.[2] The code has the common features of a modern DFT simulation package. In the past, major applications have been in the field of magnetism, spintronics, quantum materials, e.g. in ultrathin films,[3] complex magnetism like in spin spirals or magnetic Skyrmion lattices,[4] and in spin-orbit related physics, e.g. in graphene[5] and topological insulators.[6]

Simulation model

The physical model used in Fleur simulations is based on the (F)LAPW(+LO) method, but it is also possible to make use of an APW+lo description. The calculations employ the scalar-relativistic approximation for the kinetic energy operator.[7][8] Spin-orbit coupling can optionally be included.[9] It is possible to describe noncollinear magnetic structures periodic in the unit cell.[10] The description of spin spirals with deviating periodicity is based on the generalized Bloch theorem.[11] The code offers native support for the description of three-dimensional periodic structures, i.e., bulk crystals, as well as two-dimensional periodic structures like thin films and surfaces.[12] For the description of the exchange-correlation functional different parametrizations for the local density approximation, several generalized-gradient approximations, Hybrid functionals,[13] and partial support for the libXC library are implemented. It is also possible to make use of a DFT+U description.[14]

Features

The Fleur code can be used to directly calculate many different material properties. Among these are:

  • The total energy[15]
  • Forces on atoms[16][17]
  • Density of states (including projections onto individual atoms and orbitals characters)
  • Band structures (including projections onto individual atoms and orbitals characters and band unfolding)
  • Charges, magnetic moments, and orbital moments at individual atoms
  • Electric multipole moments and magnetic dipole moments
  • Heisenberg interaction parameters (via the magnetic force theorem or via comparing different magnetic structures)
  • Magnetocrystalline anisotropy energy (via the magnetic force theorem or via comparing different magnetic structures)
  • Dzyaloshinskii-Moriya interaction parameters (via the magnetic force theorem or via comparing different magnetic structures)
  • Spin-spiral dispersion relations (via the magnetic force theorem or via comparing different magnetic structures)
  • EELS spectra
  • Magnetic circular dichroism spectra
  • The Work function for surfaces

For the calculation of optical properties Fleur can be combined with the Spex code to perform calculations employing the GW approximation to many-body perturbation theory.[18] Together with the Wannier90 library it is also possible to extract the Kohn-Sham eigenfunctions in terms of Wannier functions.[19]

See also

References

  1. ^ Wortmann, Daniel; Michalicek, Gregor; Baadji, Nadjib; Betzinger, Markus; Bihlmayer, Gustav; Bröder, Jens; Burnus, Tobias; Enkovaara, Jussi; Freimuth, Frank; Friedrich, Christoph; Gerhorst, Christian-Roman; Granberg Cauchi, Sabastian; Grytsiuk, Uliana; Hanke, Andrea; Hanke, Jan-Philipp; Heide, Marcus; Heinze, Stefan; Hilgers, Robin; Janssen, Henning; Klüppelberg, Daniel Aaaron; Kovacik, Roman; Kurz, Philipp; Lezaic, Marjana; Madsen, Georg K. H.; Mokrousov, Yuriy; Neukirchen, Alexander; Redies, Matthias; Rost, Stefan; Schlipf, Martin; Schindlmayr, Arno; Winkelmann, Miriam; Blügel, Stefan (3 May 2023), FLEUR, Zenodo, doi:10.5281/zenodo.7576163
  2. ^ Lejaeghere, K.; Bihlmayer, G.; Bjorkman, T.; Blaha, P.; Blugel, S.; Blum, V.; Caliste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A.; de Gironcoli, S.; Deutsch, T.; Dewhurst, J. K.; Di Marco, I.; Draxl, C.; Dułak, M.; Eriksson, O.; Flores-Livas, J. A.; Garrity, K. F.; Genovese, L.; Giannozzi, P.; Giantomassi, M.; Goedecker, S.; Gonze, X.; Granas, O.; Gross, E. K. U.; Gulans, A.; Gygi, F.; Hamann, D. R.; Hasnip, P. J.; Holzwarth, N. A. W.; Iuşan, D.; Jochym, D. B.; Jollet, F.; Jones, D.; Kresse, G.; Koepernik, K.; Kucukbenli, E.; Kvashnin, Y. O.; Locht, I. L. M.; Lubeck, S.; Marsman, M.; Marzari, N.; Nitzsche, U.; Nordstrom, L.; Ozaki, T.; Paulatto, L.; Pickard, C. J.; Poelmans, W.; Probert, M. I. J.; Refson, K.; Richter, M.; Rignanese, G.-M.; Saha, S.; Scheffler, M.; Schlipf, M.; Schwarz, K.; Sharma, S.; Tavazza, F.; Thunstrom, P.; Tkatchenko, A.; Torrent, M.; Vanderbilt, D.; van Setten, M. J.; Van Speybroeck, V.; Wills, J. M.; Yates, J. R.; Zhang, G.-X.; Cottenier, S. (25 March 2016). "Reproducibility in density functional theory calculations of solids". Science. 351 (6280): aad3000. Bibcode:2016Sci...351.....L. doi:10.1126/science.aad3000. hdl:1854/LU-7191263. PMID 27013736. S2CID 206642768.
  3. ^ Bode, M.; Heide, M.; von Bergmann, K.; Ferriani, P.; Heinze, S.; Bihlmayer, G.; Kubetzka, A.; Pietzsch, O.; Blügel, S.; Wiesendanger, R. (May 2007). "Chiral magnetic order at surfaces driven by inversion asymmetry". Nature. 447 (7141): 190–193. Bibcode:2007Natur.447..190B. doi:10.1038/nature05802. PMID 17495922. S2CID 4421433.
  4. ^ Heinze, Stefan; von Bergmann, Kirsten; Menzel, Matthias; Brede, Jens; Kubetzka, André; Wiesendanger, Roland; Bihlmayer, Gustav; Blügel, Stefan (September 2011). "Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions". Nature Physics. 7 (9): 713–718. Bibcode:2011NatPh...7..713H. doi:10.1038/nphys2045.
  5. ^ Han, Wei; Kawakami, Roland K.; Gmitra, Martin; Fabian, Jaroslav (October 2014). "Graphene spintronics". Nature Nanotechnology. 9 (10): 794–807. arXiv:1503.02743. Bibcode:2014NatNa...9..794H. doi:10.1038/nnano.2014.214. PMID 25286274. S2CID 3009069.
  6. ^ Eremeev, Sergey V.; Landolt, Gabriel; Menshchikova, Tatiana V.; Slomski, Bartosz; Koroteev, Yury M.; Aliev, Ziya S.; Babanly, Mahammad B.; Henk, Jürgen; Ernst, Arthur; Patthey, Luc; Eich, Andreas; Khajetoorians, Alexander Ako; Hagemeister, Julian; Pietzsch, Oswald; Wiebe, Jens; Wiesendanger, Roland; Echenique, Pedro M.; Tsirkin, Stepan S.; Amiraslanov, Imamaddin R.; Dil, J. Hugo; Chulkov, Evgueni V. (January 2012). "Atom-specific spin mapping and buried topological states in a homologous series of topological insulators". Nature Communications. 3 (1): 635. Bibcode:2012NatCo...3..635E. doi:10.1038/ncomms1638. PMID 22273673. S2CID 20501596.
  7. ^ Koelling, D D; Harmon, B N (28 August 1977). "A technique for relativistic spin-polarised calculations". Journal of Physics C: Solid State Physics. 10 (16): 3107–3114. Bibcode:1977JPhC...10.3107K. doi:10.1088/0022-3719/10/16/019.
  8. ^ Takeda, T. (March 1978). "The scalar relativistic approximation". Zeitschrift für Physik B. 32 (1): 43–48. Bibcode:1978ZPhyB..32...43T. doi:10.1007/BF01322185. S2CID 120097976.
  9. ^ MacDonald, A H; Picket, W E; Koelling, D D (20 May 1980). "A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions". Journal of Physics C: Solid State Physics. 13 (14): 2675–2683. Bibcode:1980JPhC...13.2675M. doi:10.1088/0022-3719/13/14/009.
  10. ^ Kurz, Ph.; Förster, F.; Nordström, L.; Bihlmayer, G.; Blügel, S. (January 2004). "Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method" (PDF). Physical Review B. 69 (2): 024415. Bibcode:2004PhRvB..69b4415K. doi:10.1103/PhysRevB.69.024415.
  11. ^ Heide, M.; Bihlmayer, G.; Blügel, S. (October 2009). "Describing Dzyaloshinskii–Moriya spirals from first principles". Physica B: Condensed Matter. 404 (18): 2678–2683. Bibcode:2009PhyB..404.2678H. doi:10.1016/j.physb.2009.06.070.
  12. ^ Krakauer, H.; Posternak, M.; Freeman, A. J. (15 February 1979). "Linearized augmented plane-wave method for the electronic band structure of thin films". Physical Review B. 19 (4): 1706–1719. Bibcode:1979PhRvB..19.1706K. doi:10.1103/PhysRevB.19.1706.
  13. ^ Betzinger, Markus; Friedrich, Christoph; Blügel, Stefan (24 May 2010). "Hybrid functionals within the all-electron FLAPW method: Implementation and applications of PBE0". Physical Review B. 81 (19): 195117. arXiv:1003.0524. Bibcode:2010PhRvB..81s5117B. doi:10.1103/PhysRevB.81.195117. S2CID 119271848.
  14. ^ Shick, A. B.; Liechtenstein, A. I.; Pickett, W. E. (15 October 1999). "Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis". Physical Review B. 60 (15): 10763–10769. arXiv:cond-mat/9903439. Bibcode:1999PhRvB..6010763S. doi:10.1103/PhysRevB.60.10763. S2CID 119508105.
  15. ^ Weinert, M.; Wimmer, E.; Freeman, A. J. (15 October 1982). "Total-energy all-electron density functional method for bulk solids and surfaces". Physical Review B. 26 (8): 4571–4578. Bibcode:1982PhRvB..26.4571W. doi:10.1103/PhysRevB.26.4571.
  16. ^ Yu, Rici; Singh, D.; Krakauer, H. (15 March 1991). "All-electron and pseudopotential force calculations using the linearized-augmented-plane-wave method". Physical Review B. 43 (8): 6411–6422. Bibcode:1991PhRvB..43.6411Y. doi:10.1103/PhysRevB.43.6411. PMID 9998079.
  17. ^ Klüppelberg, Daniel A.; Betzinger, Markus; Blügel, Stefan (5 January 2015). "Atomic force calculations within the all-electron FLAPW method: Treatment of core states and discontinuities at the muffin-tin sphere boundary". Physical Review B. 91 (3): 035105. Bibcode:2015PhRvB..91c5105K. doi:10.1103/PhysRevB.91.035105.
  18. ^ Friedrich, Christoph; Blügel, Stefan; Schindlmayr, Arno (3 March 2010). "Efficient implementation of the G W approximation within the all-electron FLAPW method". Physical Review B. 81 (12): 125102. arXiv:1003.0316. Bibcode:2010PhRvB..81l5102F. doi:10.1103/PhysRevB.81.125102. S2CID 43385321.
  19. ^ Freimuth, F.; Mokrousov, Y.; Wortmann, D.; Heinze, S.; Blügel, S. (17 July 2008). "Maximally localized Wannier functions within the FLAPW formalism". Physical Review B. 78 (3): 035120. arXiv:0806.3213. Bibcode:2008PhRvB..78c5120F. doi:10.1103/PhysRevB.78.035120. S2CID 53133273.

External links

  • The FLEUR project
  • v
  • t
  • e
Cheminformatics
Free software
Proprietary
Chemical kinetics
Free software
  • APBS
  • Cantera
  • KPP
Proprietary
Molecular modelling
and
visualization
Free software
Proprietary
Molecular docking
Free software
Proprietary
Molecular dynamics
Free software
Proprietary
Quantum chemistry
Free software
Proprietary
Skeletal structure drawing
Free software
Proprietary
Others